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Outline
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5. Nanoindentation simulations
6. Current issues and conclusion



January 16, 2004 Quasicontinuum at Finite Temperature 3

1. The Quasicontinuum method 
(E. Tadmor, R. Miller, V. Shenoy, D. Rodney, R. Phillips, M. Ortiz)

Implementation in the QC code: www.qcmethod.com
Energy minimization technique at 0K with a reduced number of degrees of 
freedom

Atomistic region

Coarse-grained region

http://www.qcmethod.com/
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2. Coarse-grained MD

Only a few atoms are involved in the critical mechanism
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2. Coarse-grained MD: Requirements
The coarse-grained system should behave like 
the full atomistic system:

Recover the equilibrium properties of the system at finite 
temperature as time averages over the trajectories:

The equations of motions in the atomistic regions should 
be as close as possible to the full system
The coarse-grained regions ensure the appropriate 
boundary conditions
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2. Coarse grained MD: Potential energy

Assumption: At each time step, the slave/missing atoms 
are at equilibrium

Restriction to problems close to equilibrium
We need an approximation scheme to calculate the coarse-
grained-potential energy
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2. Coarse grained MD: Kinetic energy
We use the lumped mass approach:

The coarse-grained potential energy can be written as:
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2. Coarse grained energy: Thermostat

Nosé-Poincaré Thermostat

Hamiltonian dynamics: the algorithm satisfies the symplectic
condition
Real time = Virtual time

s,ps
Energy

(Nr,V,T) (Nr+1,V,E)

Real system Virtual system
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2. Coarse grained MD: Dynamical 
behavior in the atomistic regions

Equations of motion

Time-correlation functions

Choice of the mass of the thermostat
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2. Coarse grained MD: Dynamical 
behavior in the coarse-grained regions 

Equations of motion

Time correlation functions

The phonon spectrum is modified in the presence of coarse-grained 
regions 
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3. Implementation: Potential energy

Atomistic region
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3. Implementation: Potential energy
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Cauchy-Born approximation
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Slave atoms: Free energy (Local Harmonic model – LeSar et al. 1989)

Finally:

Fe



January 16, 2004 Quasicontinuum at Finite Temperature 13

4. Validation: Thermal expansion

EAM Ni (Angelo 1995) - 200x100nm

Gold standard: MD
Agreement within 0.3%
Possible internal stress 
when combining atomistic 
and coarse-grained regions

<a>MD

<a>NPQC
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4. Validation: Elastic moduli
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5. Nanoindentation simulations

Brinell indentation tests: R=70 Å
Speed: 0.05Å/ps
Sample: 2000x1000Å
Equilibration time: 200 ps
Total time: 600 ps
Nickel – EAM Angelo (1995)

5000 representative atoms vs 107 atoms
Speed up: ~ 103

24 hours on a regular computer (1GHz)
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5. Nanoindentation simulations

0K, quasi-static simulation 300K, NPQC simulation
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5. Nanoindentation simulations
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6. Current issues

Ghost forces: 
Local/Non-local interface

Instabilities at higher temperature

Different equilibrium lattice parameters:
Can we do better at a reasonable computation cost?

Wave reflection at the interface?
Mesh adaption?



January 16, 2004 Quasicontinuum at Finite Temperature 19

6. Conclusion

Described the Nosé-Poincaré Quasicontinuum
method. It allows to perform molecular dynamics 
without all the atoms at finite temperature.
The equilibrium properties are recovered
Application to nanoindentation simulations: 
Dislocation nucleation depends on temperature
Next step: temperature dependence of fracture
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